星期一, 9月 27, 2021
Home PV Technology Perovskite-silicon tandems could rapidly scale solar

Perovskite-silicon tandems could rapidly scale solar

Halide perovskites combined with conventional silicon could help solar break the 26% efficiency barrier – disrupting the technology without disrupting business systems.

Source:pv magazine

Researchers at Oxford PV, an Oxford University spinoff that focuses on perovskites, have been working on an efficiency solution that they said can help to scale up solar more rapidly.

The group is using perovskites to squeeze more power out of solar cells, pushing past the “Shockley-Queisser” 26% efficiency barrier that is posed by conventional silicon materials.

Perovskites fulfill all the optoelectronic requirements for a PV cell, and can be manufactured using existing processes. Perovskites can be layered onto a conventional cell in tandem with silicon. These features, said the developers, make perovskites ideal plug-and-play materials to integrate with silicon technology.

Metal halide perovskites have been targeted by the research community for their properties, and have been under research and development for more than a decade. Perovskites are, in many ways, a foil to silicon, said the researchers. While silicon is a weakly absorbing material that requires hundreds of micrometers of thickness to fully absorb sunlight due to its indirect bandgap, perovskites are strongly absorbing, direct bandgap semiconductors. As such, they need less than a micrometer of material thickness.

Silicon requires energy-intensive fabrication processes to create high-purity single crystals necessary for low-defect densities, where perovskites are inherently defect-tolerant and can be processed at low-temperatures into polycrystalline cells.

While the two materials behave quite differently, the end result is two high-quality materials that can deliver power conversion efficiencies of around 26% by using low-cost fabrication routes.

The increase in efficiency created by perovskite-tandem cells can help to offset some of the carbon emissions needed to produce high-purity silicon used for conventional solar PV cells, said Oxford PV.

Combining the perovskites in tandem with silicon, rather than rebuilding a process for pure-perovskite or other material combination, allows for a faster and less costly scale-up of manufacturing. Furthermore, existing supply chains already contain the physical elements that comprise perovskite materials, paving a clear path to scale up the technology rapidly.

Higher-efficiency cells do exist, like the III-V multi-junction devices built by Spectrolab and Azur Space. However, these are typically used in outer space, where cost is less critical than minimizing wafer area. These cells can operate at 40% efficiencies, but are expensive, and currently cannot compete with the conventional silicon market in a way that tandem cells could.

Oxford PV has been researching tandem cells for seven years, and the group said it is now close to starting mass commercial production in a factory in Brandenburg, Germany. The International Technology Roadmap for Photovoltaics forecasts the entry of tandem cells into the market after 2023.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

GRIDCO Gets Regulatory Approval to Procure Solar Power at ₹2.75/kWh from a 40 MW Project

The Odisha Energy Regulatory Commission (OERC) has approved the power purchase agreement (PPA) signed between Grid Corporation of Odisha (GRIDCO) and?NHPC Limited?for procuring 40...

Residential Solar System Sizes Continue to Rise in the U.S.: Berkeley Lab

The Berkeley Lab has found that solar photovoltaic (PV) system sizes continue to grow in the United States. In 2020, the median was 6.5...

IREDA’s 10 GW Solar Module Manufacturing Tender Receives Strong Response

The Indian Renewable Energy Development Agency (IREDA)’s tender for setting up manufacturing capacities for vertically-integrated high-efficiency solar modules under the production-linked incentive (PLI) program...

Nanoparticle Paste to Maximize Perovskite Solar Cells’ Efficiency Developed

Researchers at the ITMO University’s School of Physics and Engineering have developed a paste of titanium dioxide and resonant silicon nanoparticles to maximize perovskite...