星期五, 5 12 月, 2025
Home PV Technology Damaging defects in silicon solar cells

Damaging defects in silicon solar cells

Scientists in the UK investigated the relationship between two of the most worrisome defects that can affect solar cells in the field – cracking and hotspots. Their work analyzed solar cells with different levels of cracking under varying light conditions, finding that the most severely cracked cells were considerably more likely to run at high temperatures and form damaging hotspots.

Source:pv magazine

Cell cracking is a well-known threat to module performance in the field, where cracks can often start out so small as to be difficult to detect, and grow larger in the field eventually leading to lost performance. Hotspots as well, where one cell or even part of a cell runs at a higher temperature leading to various types of damage, are high on the list of worries for the solar industry.

Plenty of work has gone into understanding and mitigating both issues in recent years, and a link between the two has previously been established – there can be multiple causes for hotspots, but they are more likely to form in cracked cells. Scientists at the University of York and the University of Huddersfield in the UK decided to take a closer look at the link between cell cracking and hotspots.

The group analyzed cells with different levels of cracking, noting that their research is the first to divide cells into four ‘modes’ based on their level of cracking – no cracking, microcracks, shaded area, and breakdown. The cells were put through various stages of testing and characterization to observe the formation of hotspots – detailed in the paper An empirical investigation on the correlation between solar cell cracks and hotspots, published in Scientific Reports.

Results showed that hotspots did not form in the first two cells with no or less severe cracking, while the two more severely cracked modes saw an increase in temperature from 25 up to 100 degrees Celsius, and a significantly higher likelihood of hotspots. Their research also revealed more about the known relationship between partial shading and hotspots, enabling them to state that shading ratios between 40% and 60% come with similar temperature increases to severe cracking and the formation of severe hotspots.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Australia solar Installation hits 40 GW

An IEA survey of solar power applications in Australia shows that the country installed 5.2 GW of solar capacity in 2024 and reached a...

Versiris Energy completes logistically tricky rooftop solar project

Versiris Energy completed a 575.36-kWDC rooftop solar project for a national commercial retail facility in Chanhassen, Minnesota. Versisis, a commercial solar developer and subsidiary...

Recurrent Energy Sells 275 MW Solar-Plus-Storage Project in New South Wales to European Investor

Recurrent Energy, a subsidiary of Canadian Solar Inc. and a global developer of solar and energy storage assets, has finalized the sale of its...

Azerbaijan seeks Chinese help in achieving “green” power dream

Azerbaijan is hoping China can play a big role in helping Baku fulfill its ambitions of building a “green energy corridor” to Europe. Azerbaijani officials...