星期五, 10月 22, 2021
Home PV Markets Fraunhofer ISE achieves 35.9% efficiency for III-V triple-junction solar cell based on...

Fraunhofer ISE achieves 35.9% efficiency for III-V triple-junction solar cell based on silicon

The cell, which looks externally like a device with a two-terminal architecture, was built with III-V semiconductor layers that were connected to the silicon sub-cell on the atomic level. The cell may be used in electrically powered aircraft and drones.

Source:pv magazine

Germany’s Fraunhofer Institute for Solar Energy Systems ISE claims to have achieved a 35.9% conversion efficiency rate for a III-V monolithic triple-junction solar cell based on silicon.

“This value measured under the terrestrial AM1.5g spectrum sets a new world record and demonstrates the potential of silicon-based tandem photovoltaics,” the research institute stated.

The cell, which looks externally like a device with a two-terminal architecture, was built with III-V semiconductor layers that were connected to the silicon sub-cell on the atomic level. The key for achieving the record power conversion efficiency was the use of a semiconductor material based on gallium-indium-arsenide-phosphide (GaInAsP) for the middle cell.

“The new material allowed us to further improve the lifetime of the charge carriers and thus achieve a higher cell voltage,” said researcher Patrick Schygulla. “It’s great to see how our material development has successfully contributed to improvements in III-V//Si triple-junction solar cells.”

The scientists claim the cell may be used in electrically powered aircraft and drones.

In August, the Fraunhofer ISE achieved a 25.9% conversion efficiency rate for a III-V tandem solar cell grown directly on silicon. This cell is a modified version of a 34.5%-efficient III-V solar cell that is manufactured through a process known as direct wafer bonding, where the III-V layers are first deposited on an aluminum gallium arsenide (GaAs) substrate and then pressed together.

The cost of producing solar cells based on compounds of III-V element materials – named according to the groups of the periodic table that they belong to – has confined such devices to niche applications, including drones and satellites, where low weight and high efficiency are more pressing concerns than costs in relation to the energy produced.

Researchers at the Tampere University in Finland have recently developed a III-V multi-junction solar cell which is claimed to have the potential for reaching a power conversion efficiency of close to 50%. The National Renewable Energy Laboratory (NREL) in the United States announced last year a 32.9% efficiency for a tandem cell device utilizing III-V materials.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Calculating the value of a community solar program

In an effort to quantify the overall value that community solar programs could add, the Coalition for Community Solar Access enlisted Michigan State University’s...

Highway-side solar could produce 36 TWh annually

Research published by the Webber Energy Group at the University of Texas at Austin and nonprofit group The Ray has led to a partnership...

Maine city, school district subscribe to 2.3 MW of community solar

The Town of Wells and the Wells Ogunquit Community School District have signed a Net Energy Billing Agreement with Boston-based solar provider Nexamp. Under...

Pine Gate Renewables breaks ground on nearly 70-MW North Carolina solar project

Pine Gate Renewables announced the financing of its second project in Stanly County, North Carolina, which will generate 69.89 MW of renewable energy for...