星期二, 九月 22, 2020
Home PV News 3D-Micromac receives order from LWD Solar for a microCELL™ TLS half-cell laser...

3D-Micromac receives order from LWD Solar for a microCELL™ TLS half-cell laser system

3D-Micromac AG, the industry leader in laser micromachining and roll-to-roll laser systems for the photovoltaic, medical device and electronics markets, today announced the order intake for a microCELL TLS laser system for the plant in Langenwetzendorf, Thuringia. The initiator of the investment is the Heckert Solar GmbH, one of the largest and leading PV module manufacturers in Germany with a production capacity of 400 MW at their site in Chemnitz.

Thermal laser separation (TLS) leads to improved module performance compared to conventional scribe and break technology
3D-Micromac AG, the industry leader in laser micromachining and roll-to-roll laser systems for the photovoltaic, medical device and electronics markets, today announced the order intake for a microCELL TLS laser system for the plant in Langenwetzendorf, Thuringia.
The initiator of the investment is the Heckert Solar GmbH, one of the largest and leading PV module manufacturers in Germany with a production capacity of 400 MW at their site in Chemnitz. LWD Solar puts their trust in German and European production equipment due to its technological leadership. The company will manufacture monocrystalline half-cell modules in the new factory with a planned capacity of an additional 400 MW. Production is scheduled to commence in the first quarter of 2021. LWD Solar is going to use 3D Micromac’s TLS technology for cell cutting. Danny B?nisch, project manager for LWD Solar stated: “With our decision for the TLS technology from 3D-Micromac, we are consciously opting for a European solution that supports our efforts to make the domestic solar industry fit for the future again.”
The microCELL TLS system uses thermal laser separation (TLS) to separate silicon solar cells into half cells. The ablation-free process guarantees excellent edge quality. The separated half cells have an up to 30% higher mechanical strength compared to ablative laser processes and show a lower power loss of the solar module over its entire life cycle. Already with delivery, the laser system will be compatible for wafer sizes beyond M6 and is therefore ideally suited for processing future wafer formats.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Apple data center in Denmark powered by 50 MW of solar

Apple has revealed that its data center in Viborg, Denmark, is now being powered by a 50 MW solar project under a long-term power...

Solar + storage experiment in Tampa Bay selected for Solar Energy Innovation Network project

An innovative solar + storage research project led by the Tampa Bay Regional Planning Council has been selected as a finalist for the Solar...

Chinese PV Industry Brief: 350 MW wind-solar project, 200 MW of floating PV

Longyuan Energy said this week that it has signed an agreement with the municipal authorities in Binzhou, Shandong province, to build 300 MW of solar...

IEEE creates education and credentialing program for interconnecting distributed resources to the grid

IEEE and the IEEE Standards Association (IEEE SA) announced the IEEE Std 1547-2018 Distributed Energy Resources (DER) Interconnection Commissioning: Education and Credentialing Program, a new...