星期五, 九月 25, 2020
Home PV News Fine-tuning plasmonic solar cells

Fine-tuning plasmonic solar cells

Two different studies published this week show new advances in the use of plasmonic enhancement to improve performance and stability of perovskite solar cells.

Source:pv magazine

In recent yearsplasmonic enhancement has been used in a wide variety of research aimed at improving the efficiency and thermal stability of perovskite solar cells. The technique consists of enhancing the cells’ electromagnetic field through metal nanostructures, which in turn improves the devices’ low optical absorption in the visible spectrum.

Last week, two new studies on this topic were published, demonstrating that interest in the metal plasmonic effect has not weakened in recent times.

New advances

In research conducted by Germany’s Technical University of Darmstadt, in collaboration wih Singapore’s Agency for Science, Technology and Research (A*STAR), the recent advances of this technology have been analyzed.

The group explained that surface plasmons are particularly interesting for perovskite cells, as their properties can be fine‐tuned by controlling the shape, size, and dielectric environment of the metal nanostructures. As a result, perovskite cells integrating plasmonic structures may have thinner absorber layers that do not compromise optical thickness, and can be designed as semi-transpaerent devices.

The scientists described the typical plasmonic perovskite cell as a device made of a compact 20–50 nm titanium oxide (TiO2) blocking layer, that is embedded between a 100–400 nm layer of an electron transportation material such as mesoporous TiO2 and a transparent conductive oxide substrate, which is in turn followed by a hole transport material sandwiched between the perovskite absorber and the back contact electrode.

The scientists also described how hot‐electron injection, light trapping, and modulation of the energy flow direction in dipole–dipole coupling by the plasmonic are also being used in perovskite cell applications. Their findings were presented in the paper Recent Advances in Plasmonic Perovskite Solar Cells, published in Advanced Science.

Bimetallic nanoparticles

In another study published this week in the journal NatureBimetallic Implanted Plasmonic Photoanodes for TiO2 Sensitized Third Generation Solar Cells, scientists from India’s Guru Nanak Dev University sought to improve the light-harvesting ability of the TiO2 sensitizer used in this type of cell, while at the same time preventing recombination effects.

Gold and silver nanoparticles were embedded in TiO2 with an ion implantation technique. According to the researchers, the efficiency of the cells relying on the nanoparticles and their plasmon-induced optical and electrical effects showed an efficiency that was 89% higher (relatively) than that of unimplanted cells.

This higher efficiency is determined by the enhanced light-harvesting ability of TiO2, which can produce enormous amount of photo-excited electrons, and from the plasmonic electrical effects induced by silver and gold nanoparticles embedded in the TiO2photoanodes, the researchers explained.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Apple data center in Denmark powered by 50 MW of solar

Apple has revealed that its data center in Viborg, Denmark, is now being powered by a 50 MW solar project under a long-term power...

Solar + storage experiment in Tampa Bay selected for Solar Energy Innovation Network project

An innovative solar + storage research project led by the Tampa Bay Regional Planning Council has been selected as a finalist for the Solar...

Chinese PV Industry Brief: 350 MW wind-solar project, 200 MW of floating PV

Longyuan Energy said this week that it has signed an agreement with the municipal authorities in Binzhou, Shandong province, to build 300 MW of solar...

IEEE creates education and credentialing program for interconnecting distributed resources to the grid

IEEE and the IEEE Standards Association (IEEE SA) announced the IEEE Std 1547-2018 Distributed Energy Resources (DER) Interconnection Commissioning: Education and Credentialing Program, a new...