星期三, 30 7 月, 2025
Home PV Technology Single crystal perovskite solar cell with 17.8% efficiency

Single crystal perovskite solar cell with 17.8% efficiency

The solar cell was manufactured with crystals that were grown directly onto indium tin oxide (ITO) substrates covered with hole transport layer (HTL). These substrates have a controlled thickness of tens of micrometers and area of tens of mm2. The device showed an efficiency of 17.8%, a short-circuit current of 21.0 mA cm−2, an open-circuit voltage to 1.08 V, and a fill factor to 78.6%.

Source:pv magazine

Perovskite single crystals have generated interest in recent years for solar cell applications, owing to their optoelectronic properties such as long carrier diffusion length, high carrier mobility, and low trap density. The crystals are known for being free from grain boundaries and demonstrating low defect densities which, according to many scientists, make them comparable to those of the best-performing quality silicon. However, the benefits of switching from multi to single crystal growth in silicon are well known. For perovskites this has thus far proved challenging.

Researchers at the University of Nebraska in the United States have manufactured a perovskite solar cell with single crystals comprised of methylammonium lead triiodide (MAPbI3) via a novel approach, which they describe as a diffusion-facilitated space-confined method. “Current studies of the intrinsic properties of the perovskites are mainly based on thick bulk single crystals with thickness of millimeter which are too thick for application in solar cells,” they said. “Growing thin perovskite single crystals with large area represents an effective approach to overcome this obstacle, however there is no effective method handling the micrometer-thick iodide-based perovskite single crystals with large area.”

The U.S. group grew the crystals directly onto indium tin oxide (ITO) substrates covered with hole transport layer (HTL). These substrates have a controlled thickness of tens of micrometers and area of tens of mm2.The cell was then built with single crystals with a thickness of 10 μm that showed an efficiency of 16.1%, a short-circuit current of 20.5 mA cm−2, an open circuit voltage of 1.06 V, and a fill factor of 74.1%.

The academics decided then to treat the surface of the single crystals by spin coating the methylammonium iodide (MAI) solution to reduce the surface charge trap density, which raised the cell efficiency to 17.8%, the short-circuit current to 21.0 mA cm−2, the open-circuit voltage to 1.08 V, and the fill factor to 78.6%.

“We demonstrated the use of a single crystal to broaden the photoresponse range of the perovskite solar cells without losing device photovoltage and fill factor,” the scientists said. “More efforts are needed to enhance the carrier diffusion length and passivate the surface nonradiative recombination center density in order to boost the device efficiency to Shockley–Queisser limit.”

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Plans lodged for solar farm to power 18,000 homes

Plans have been lodged for a solar farm and battery energy storage system in Derbyshire. Noventum Power has submitted an application to South Derbyshire District...

Turkish firm to invest $520M in solar equipment production

Turkish solar technology company CW Enerji will invest $520 million (TL 21.09 billion) under the government's HIT-30 incentive program to expand its high-efficiency solar...

Tesla is set to build its biggest energy storage facility in China

Tesla, China Kangfu International Leasing, and the Shanghai Municipal Government signed a cooperation agreement to build an energy storage power station, which will become...

Sungrow launches next-gen hybrid residential energy storage system

China renewable energy solutions company Sungrow Power has revealed its newest hybrid next generation residential energy storage system (ESS), with its the latest in...