星期五, 七月 3, 2020
Home PV News Quantum dot hybrid HTJ cell with 12.82% efficiency

Quantum dot hybrid HTJ cell with 12.82% efficiency

South Korean researchers have developed a hybrid tandem solar cell based on quantum dots and organic bulk heterojunction (BHJ) photoactive materials. They claim that the cell could reach an efficiency rate of around 15% if they continue to reduce energy losses in the quantum dot cell and enhance near-infrared absorption.

Source:Pv magazine

Scientists from South Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed hybrid tandem solar cells with quantum dots and organic bulk heterojunction (BHJ) photoactive materials, for which they claim to have achieved a conversion efficiency of 12.82%.

This efficiency level is among the highest recorded for single-junction and tandem devices, the research team claimed, while adding that the rate was achieved by optimizing the short-circuit current density balance of each sub‐cell. The achieved efficiency is also higher than that of each single-junction device, which is 11.17% for the quantum dot device and 11.02% for the organic BHJ device.

They said that the organic bulk heterojunction photoactive materials with which the cell was hybridized are designed to compensate for the external quantum efficiency (EQE) loss in the near-infrared (NIR) region. “The NIR-absorbing organic BHJ devices were employed as the back sub-cells to harvest the transmitted NIR photons from the CQD front sub-cells,” they explained.

Although quantum dots are good at absorbing light in the NIR, they may not be able to absorb light in all of the cell areas, the researchers said.

“This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR-absorbing photoactive materials,” they said, noting that they are convinced that the new cell could reach an efficiency rate of around 15% if they continue to reduce energy loss in the quantum dot cell and enhance NIR absorption.

The research team manufactured the cell through a simple production process and at room temperature. It exhibited almost negligible degradation after air storage for three months, they noted. The cell is described in the study Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions, published in Advanced Energy Materials.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Ikea invests more in solar by the day

In 2019, IKEA invested $2.8 billion in green energy, which contributed to the 1 million solar panels it was able to install on 370...

Bidding war continues as Infigen backs Iberdrola’s revised offer

The bidding war for Australia’s largest ASX-listed renewable energy generator has continued as rivals increased their respective offers. On Monday, Philippines-linked investment company UAC...

NTPC seeks to empanel vendors for bulk solar module procurement

NTPC seeks to empanel domestic and international manufacturers for bulk procurement of solar PV modules as it aims to revamp its renewable energy generation...

India sets new record low solar tariff of Rs 2.36/kWh

The recent 2 GW solar auction by Solar Energy Corporation of India (SECI) hit a historic low tariff of Rs 2.36 per kilowatt-hour (kWh)...