星期二, 四月 7, 2020
Home PV News Quantum dot hybrid HTJ cell with 12.82% efficiency

Quantum dot hybrid HTJ cell with 12.82% efficiency

South Korean researchers have developed a hybrid tandem solar cell based on quantum dots and organic bulk heterojunction (BHJ) photoactive materials. They claim that the cell could reach an efficiency rate of around 15% if they continue to reduce energy losses in the quantum dot cell and enhance near-infrared absorption.

Source:Pv magazine

Scientists from South Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed hybrid tandem solar cells with quantum dots and organic bulk heterojunction (BHJ) photoactive materials, for which they claim to have achieved a conversion efficiency of 12.82%.

This efficiency level is among the highest recorded for single-junction and tandem devices, the research team claimed, while adding that the rate was achieved by optimizing the short-circuit current density balance of each sub‐cell. The achieved efficiency is also higher than that of each single-junction device, which is 11.17% for the quantum dot device and 11.02% for the organic BHJ device.

They said that the organic bulk heterojunction photoactive materials with which the cell was hybridized are designed to compensate for the external quantum efficiency (EQE) loss in the near-infrared (NIR) region. “The NIR-absorbing organic BHJ devices were employed as the back sub-cells to harvest the transmitted NIR photons from the CQD front sub-cells,” they explained.

Although quantum dots are good at absorbing light in the NIR, they may not be able to absorb light in all of the cell areas, the researchers said.

“This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR-absorbing photoactive materials,” they said, noting that they are convinced that the new cell could reach an efficiency rate of around 15% if they continue to reduce energy loss in the quantum dot cell and enhance NIR absorption.

The research team manufactured the cell through a simple production process and at room temperature. It exhibited almost negligible degradation after air storage for three months, they noted. The cell is described in the study Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions, published in Advanced Energy Materials.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Tata Power Solar bags 300 MW CPSU II project from NTPC

Tata Power Solar—a wholly-owned subsidiary of integrated power producer Tata Power—has received a Letter of Award from state-owned power generator NTPC to build a 300 MW...

Greece wraps up PV tender with record-breaking €0.04911/kWh tariff

Greece has launched a series of renewable energy tenders to procure new solar PV and wind power capacity in separate auctions and joint tenders....

All-in-one device integrating a microinverter and optimizer

Power electronics researchers from Estonia’s TalTech Power Electronics Research Group and startup Ubik Solutions have developed a hybrid inverter solution that integrates a microinverter...

Lowest shortlisted bid in Saudi 1.47 GW tender was $0.0161/kWh

Saudi Arabia has announced the shortlisted bidders of the second round of its National Renewable Energy Program (NREP) tender, which includes four solar plants totaling 1.4 GW,...