星期二, 5 8 月, 2025
Home PV News German scientists develop solar facade with 50% higher yield

German scientists develop solar facade with 50% higher yield

The three-meter prototype consists of nine panels based on an aluminum compound. The PV elements of the facade can be tilted to capture more sunlight.

Source:Pv magazine

Germany’s Fraunhofer Center for Silicon Photovoltaics (CSP) and the University of Applied Sciences, Technology and Business (HTWK) Leipzig have developed a solar facade they claim out-performs current vertical building-integrated PV (BIPV) installations.

The German system, designed by HTWK Leipzig scientists and realized by their Fraunhofer CSP counterparts, features PV elements which can be tilted to capture more sunlight. “The photovoltaic elements that are integrated in this facade provide up to 50% more yield than planar solar modules attached to building walls,” said Sebastian Schindler, project manager at Fraunhofer CSP. “And the facade also looks good.”

The three-meter prototype features nine panels mounted in an aluminum compound.

The developers also came up with a method of integrating PV into concrete facades, particularly specially-designed carbon concrete – which absorbs carbon dioxide as it hardens, reducing its net carbon footprint.

Carbon-eating concrete

Researchers from both institutions worked with staff from the TU Dresden university on three concepts. “At the Fraunhofer CSP, we investigated how best to attach photovoltaic elements to such carbon-concrete facades – how to optimally combine the new type of concrete with the generation of solar power,” Schindler said.

One solution was to integrate the PV elements into the facade, with solar modules either poured directly into the concrete or laminated or glued to concrete slabs. However, it is also possible to attach the modules with push-buttons, screw connections or other fastening methods, making maintenance and repair work easier. “We were able to show that all three fastening options are technically feasible,” said Schindler.

A fitting solution

Ensuring the PV panels fit into the concrete was one of the challenges faced by the researchers, who also had to be careful not to screw modules into thin areas of concrete or surfaces containing carbon fibers.

The academics who came up with the design are now working on developing a commercial version under the SOLARcon: Concrete Facades 2.0 project they started in November.

In the meantime, the PV components and concrete sections of the prototype installation will be tested under different weather conditions and exposed to accelerated aging tests. Simulations are also planned to examine how the concrete and PV element connection point heat up in high temperatures and how the modules behave under high wind and pressure loads.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Plans lodged for solar farm to power 18,000 homes

Plans have been lodged for a solar farm and battery energy storage system in Derbyshire. Noventum Power has submitted an application to South Derbyshire District...

Turkish firm to invest $520M in solar equipment production

Turkish solar technology company CW Enerji will invest $520 million (TL 21.09 billion) under the government's HIT-30 incentive program to expand its high-efficiency solar...

Tesla is set to build its biggest energy storage facility in China

Tesla, China Kangfu International Leasing, and the Shanghai Municipal Government signed a cooperation agreement to build an energy storage power station, which will become...

Sungrow launches next-gen hybrid residential energy storage system

China renewable energy solutions company Sungrow Power has revealed its newest hybrid next generation residential energy storage system (ESS), with its the latest in...