星期三, 9 7 月, 2025
Home PV Technology Zinc-ion battery that stores solar energy

Zinc-ion battery that stores solar energy

U.K. researchers have developed a battery with a photocathode made of vanadium dioxide, which is used to harvest light and store zinc ions and zinc oxide as a charge transport layer. The device showed an efficiency of around 1.2% and capacity retention of around 73% after 500 cycles.

Source:pv magazine

University of Cambridge researchers have developed a photo-rechargeable zinc-ion battery that is able to harvest and store solar energy. “These cells were conceived as a low-cost energy harvesting and storage solution for off-grid communities in developing countries,” Professor Michael Volder told pv magazine.

The battery was built with a photocathode made of vanadium dioxide (VO2) which is used to harvest light and store zinc ions and zinc oxide (ZnO) as a charge transport layer. Vanadium dioxide was chosen for its bandgap energy in the visible light spectrum and the remarkable fast charge-discharge kinetics. Previously, the authors had implemented photo–batteries in cells with a surface of around 100cm2 and a 64cm2 optical window that allows light to reach vanadium oxide and recharge the battery.

Under the proposed configuration, electrons are extracted to the conduction band of the VO2 photocathode and then transported to carbon fiber (CF) through a zinc oxide (ZnO) layer, which is also intended at blocking holes.

“This combined action of electron extraction and blocking holes in VO2 leads to photocharging,” the researchers said, noting that the ZnO layer is used for charge transport and VO2 for energy storage.

The ZnO layer was coated on the current collector and the VO2 photocathode was synthesized directly on the ZnO layer.

“This improved charge separation and the interface between active materials, resulting in a 2.8 times higher photo-conversion efficiency compared to materials where the VO2 is physically mixed with an electron transport material,” the academics said.

The battery showed an efficiency of around 1.2%, which compares to around 0.6% in similar batteries manufactured with other photocathode materials. It also exhibited capacity retention of around 73% after 500 cycles.

“The next step is to test these batteries under real-life conditions,” Volder said.

The researchers described the device in “Vanadium dioxide–zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries,” which was recently published in Royal Society of Chemistry’s Journal of Materials Chemistry A of the Royal Society of Chemistry.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -

Most Popular

Al Kharsaah: A Pioneering Solar Power Plant in Qatar

Located 80 km west of Qatar's capital, Doha, the Al Kharsaah Solar PV Independent Power Producer (IPP) project is the country's first large-scale solar...

OMV Petrom Buys 50 Pct Stake in Gabare Solar Project

OMV Petrom S.A. has acquired a 50 percent stake in the Gabare solar project from Enery Element, a large-scale project in Byala Slatina, near...

RWE 7.5MW/11MWh battery energy storage start commercial operation in Netherlands

Power generation firm RWE has put a BESS in the Netherlands into commercial operation, its first that is capable of providing inertia to the...

Gurīn Energy selects Saft’s battery energy storage system for first Japanese project

Saft, a subsidiary of TotalEnergies, has been selected by leading Asian renewable energy developer Gurīn Energy to supply a battery energy storage system (BESS)...